
Flask-Plugins Documentation
Release 0.1-dev

sh4nks

January 26, 2016

Contents

1 Quickstart 3
1.1 Plugin Structure . 3
1.2 Hello World! . 4
1.3 Enabling and Disabling Plugins . 4
1.4 Events . 5

2 The info.json File 7

3 API Documentation 9
3.1 The Plugin Class . 9
3.2 Plugin System . 10
3.3 Event System . 11

i

ii

Flask-Plugins Documentation, Release 0.1-dev

Flask-Plugins provides an easy way to create plugins for your application. It is possible to create Events which can
then be used to extend your application without the need to modify your core code.

• Quickstart
– Plugin Structure
– Hello World!
– Enabling and Disabling Plugins
– Events

• The info.json File
• API Documentation

– The Plugin Class
– Plugin System
– Event System

Contents 1

Flask-Plugins Documentation, Release 0.1-dev

2 Contents

CHAPTER 1

Quickstart

First of all, you have to initialize the extension. This can be done in two different ones.

The first one is to initalize it directly:

from flask.ext.plugins import PluginManager

plugin_manager = PluginManager(app)

where as the second one is to use the factory pattern:

from flask.ext.plugins import PluginManager

plugin_manager = PluginManager()
plugin_manager.init_app(app)

1.1 Plugin Structure

After the first step is done, you can start developing your first plugin. The most minimal plugin needs to have at least
it’s own directory, a info.json file, where some meta data about the plugin is stored and last but not least a __init__.py
file where the name of the plugin class is specified.

For example, the structure of small plugin can look like this:

my_plugin
|-- info.json
|-- __init__.py

the structure of a more complex plugin can also look like this:

my_plugin
|-- info.json Contains the Plugin's metadata
|-- license.txt The full license text of your plugin
|-- __init__.py The plugin's main class is located here
|-- views.py
|-- models.py
|-- forms.py
|-- static
| |-- style.css
|-- templates

|-- myplugin.html

3

Flask-Plugins Documentation, Release 0.1-dev

1.2 Hello World!

For a better understanding you can also have a look at the example application.

Another important note is, that you have to specify the name of the plugin class in the __init__.py file. The reason
for this is that the Plugin Loader looks in the __init__.py for a __plugin__ variable to load the plugin. If no
such variable exists, the loader will just go on to the next plugin. and if the specified name in __init__.py doesn’t
match the name of the actual plugin class it will raise an exception.

So for example, the __plugin__ variable, in the __init__.py file, for a HelloWorld plugin class could look
like this:

__plugin__ = "HelloWorld"

A HelloWorld Plugin could, for example, look like this:

class HelloWorld(Plugin):
def setup(self):

connect_event('before-data-rendered', do_before_data_rendered)

In addition to this, the info.json file is also required. It just contains some information about the plugin:

{
"identifier": "hello_world",
"name": "Hello World",
"author": "sh4nks",
"license": "BSD",
"description": "A Hello World Plugin.",
"version": "1.0.0"

}

For more available fields, see The info.json File.

1.3 Enabling and Disabling Plugins

This extension, unlike other python plugin systems, uses a different approach for handling plugins. Instead of installing
plugins from PyPI, plugins should just be dropped into a directory. Another thing that is unique, is to disable plugins
without touching any source code. To do so, a simple DISABLED file in the plugin’s root directory is enough. This
can either be done by hand or with the methods provided by PluginManager.

The directory structure of a disabled plugin is shown below.

my_plugin
|-- DISABLED # Just add a empty file named "DISABLED" to disable a plugin
|-- info.json
|-- __init__.py

The server needs to be restarted in order to disable the plugin. This is a limitation of Flask. However, it is possible,
to restart the application by sending a HUP signal to the application server. The following code snippets, are showing
how this can be done with the WSGI server gunicorn. Gunicorn has be to started in daemon (--daemon) mode in
order for this to work.

@app.route('/restart-server/')
def restart_server():
os.kill(os.getpid(), signal.SIGHUP)

Which you can then call via a AJAX call.

4 Chapter 1. Quickstart

https://github.com/sh4nks/flask-plugins/tree/master/example

Flask-Plugins Documentation, Release 0.1-dev

function reload_server() {
// Reload Server
$.ajax({
url: "/reload-server/"

});
// Wait 1 second and reload page
setTimeout(function(){
window.location = document.URL;

}, 1000);
}

This can then be called with a simple button (given you have included the JS file in your html template).

<button onclick='reload_server()'>Reload Server</button>

1.4 Events

We also provide a Event system out of the box. It is up to you if you want to extend your application with events. If
you decide to use it, then you just need to add in specific places in your code the emit_event() function with the
name of your event and optionally the data which can be modified by a plugin:

from flask.ext.plugins import emit_event

emit_event("before-data-rendered", data)

and than you can add a callback (e.q. in your plugin setup method):

from flask.ext.plugins import connect_event

def do_before_data_rendered(data):
return "returning modified data"

connect_event("before-data-rendered", do_before_data_rendered)

Of course you can also do that in your templates - For this we have already added emit_event() to your jinja env
context. So you just need to call it in the template:

{{ emit_event("before-data-rendered") }}

If you want to see a fully working example, please check it out here.

1.4. Events 5

https://github.com/sh4nks/flask-plugins/tree/master/example

Flask-Plugins Documentation, Release 0.1-dev

6 Chapter 1. Quickstart

CHAPTER 2

The info.json File

Below are shown all available fields a plugin can use. Of course, it always depends if the application, that uses this
extension, needs so much information about a plugin. The only really required fields are marked with required.

identifier: required The plugin’s identifier. It should be a Python identifier (starts with a letter or underscore,
the rest can be letters, underscores, or numbers) and should match the name of the plugin’s folder.

name: required A human-readable name for the plugin.

author: required The name of the plugin’s author, that is, you. It does not have to include an e-mail address, and
should be displayed verbatim.

description A description of the plugin in a few sentences. If you can write multiple languages, you can include
additional fields in the form description_lc, where lc is a two-letter language code like es or de. They
should contain the description, but in the indicated language.

description_lc This is a dictionary of localized versions of the description. The language codes are all lower-
case, and the en key is preloaded with the base description.

website The URL of the plugin’s Web site. This can be a Web site specifically for this plugin, Web site for a
collection of plugins that includes this plugin, or just the author’s Web site.

license A simple phrase indicating your plugin’s license, like GPL, MIT/X11, Public Domain, or Creative
Commons BY-SA 3.0. You can put the full license’s text in the license.txt file.

license_url A URL pointing to the license text online.

version This is simply to make it easier to distinguish between what version of your plugin people are using. It’s
up to the theme/layout to decide whether or not to show this, though.

options Any additional options. These are entirely application-specific, and may determine other aspects of the
application’s behavior.

7

Flask-Plugins Documentation, Release 0.1-dev

8 Chapter 2. The info.json File

CHAPTER 3

API Documentation

flask_plugins.get_enabled_plugins()
Returns all enabled plugins as a list

flask_plugins.get_all_plugins()
Returns all plugins as a list including the disabled ones.

flask_plugins.get_plugin_from_all(identifier)
Returns a plugin instance from all plugins (includes also the disabled ones) for the given name.

flask_plugins.get_plugin(identifier)
Returns a plugin instance from the enabled plugins for the given name.

3.1 The Plugin Class

Every Plugin should implement this class. It is used to get plugin specific data. and the PluginManager tries
call the methods which are stated below.

class flask_plugins.Plugin(path)
Every plugin should implement this class. It handles the registration for the plugin hooks, creates or modifies
additional relations or registers plugin specific thinks

enabled = False
If setup is called, this will be set to True.

path = None
The plugin’s root path. All the files in the plugin are under this path.

name = None
The plugin’s name, as given in info.json. This is the human readable name.

identifier = None
The plugin’s identifier. This is an actual Python identifier, and in most situations should match the name
of the directory the plugin is in.

description = None
The human readable description. This is the default (English) version.

description_lc = None
This is a dictionary of localized versions of the description. The language codes are all lowercase, and the
en key is preloaded with the base description.

9

Flask-Plugins Documentation, Release 0.1-dev

author = None
The author’s name, as given in info.json. This may or may not include their email, so it’s best just to
display it as-is.

license = None
A short phrase describing the license, like “GPL”, “BSD”, “Public Domain”, or “Creative Commons BY-
SA 3.0”.

license_url = None
A URL pointing to the license text online.

website = None
The URL to the plugin’s or author’s Web site.

version = None
The plugin’s version string.

options = None
Any additional options. These are entirely application-specific, and may determine other aspects of the
application’s behavior.

license_text
The contents of the theme’s license.txt file, if it exists. This is used to display the full license text if
necessary. (It is None if there was not a license.txt.)

setup()
This method is used to register all things that the plugin wants to register.

enable()
Enables the plugin by removing the ‘DISABLED’ file in the plugins root directory, calls the setup()
method and sets the plugin state to true.

disable()
Disablesthe plugin.

The app usually has to be restarted after this action because plugins _can_ register blueprints and in order
to “unregister” them, the application object has to be destroyed. This is a limitation of Flask and if you
want to know more about this visit this link: http://flask.pocoo.org/docs/0.10/blueprints/

install()
Installs the things that must be installed in order to have a fully and correctly working plugin. For example,
something that needs to be installed can be a relation and/or modify a existing relation.

uninstall()
Uninstalls all the things which were previously installed by install(). A Plugin must override this method.

3.2 Plugin System

class flask_plugins.PluginManager(app=None, **kwargs)
Collects all Plugins and maps the metadata to the plugin

__init__(app=None, **kwargs)
Initializes the PluginManager. It is also possible to initialize the PluginManager via a factory. For example:

plugin_manager = PluginManager()
plugin_manager.init_app(app)

Parameters

10 Chapter 3. API Documentation

http://flask.pocoo.org/docs/0.10/blueprints/

Flask-Plugins Documentation, Release 0.1-dev

• app – The flask application.

• plugin_folder – The plugin folder where the plugins resides.

• base_app_folder – The base folder for the application. It is used to build the plugins
package name.

all_plugins
Returns all plugins including disabled ones.

plugins
Returns all enabled plugins as a dictionary. You still need to call the setup method to fully enable them.

load_plugins()
Loads all plugins. They are still disabled. Returns a list with all loaded plugins. They should now be
accessible via self.plugins.

find_plugins()
Find all possible plugins in the plugin folder.

setup_plugins()
Runs the setup for all enabled plugins. Should be run after the PluginManager has been initialized. Sets
the state of the plugin to enabled.

install_plugins(plugins=None)
Installs one or more plugins.

Parameters plugins – An iterable with plugins. If no plugins are passed it will try to install
all plugins.

uninstall_plugins(plugins=None)
Uninstalls one or more plugins.

Parameters plugins – An iterable with plugins. If no plugins are passed it will try to uninstall
all plugins.

enable_plugins(plugins=None)
Enables one or more plugins.

It either returns the amount of enabled plugins or raises an exception caused by os.remove which says
most likely that you can’t write on the filesystem.

Parameters plugins – An iterable with plugins.

disable_plugins(plugins=None)
Disables one or more plugins. It either returns the amount of disabled plugins or raises an exception caused
by open which says most likely that you can’t write on the filesystem.

The app usually has to be restarted after this action because plugins can register blueprints and in order to
“unregister” them, the application object has to be destroyed. This is a limitation of Flask and if you want
to know more about this visit this link: http://flask.pocoo.org/docs/0.10/blueprints/

Parameters plugins – An iterable with plugins

3.3 Event System

class flask_plugins.EventManager(app)
Helper class that handles event listeners and event emitting.

This is not a public interface. Always use the emit_event or connect_event or the iter_listeners functions to
access it.

3.3. Event System 11

http://flask.pocoo.org/docs/0.10/blueprints/

Flask-Plugins Documentation, Release 0.1-dev

connect(event, callback, position=’after’)
Connect a callback to an event.

remove(event, callback)
Remove a callback again.

iter(event)
Return an iterator for all listeners of a given name.

template_emit(event, *args, **kwargs)
Emits events for the template context.

flask_plugins.emit_event(event, *args, **kwargs)
Emit a event and return a list of event results. Each called function contributes one item to the returned list.

This is equivalent to the following call to iter_listeners():

result = []
for listener in iter_listeners(event):

result.append(listener(*args, **kwargs))

flask_plugins.connect_event(event, callback, position=’after’)
Connect a callback to an event. Per default the callback is appended to the end of the handlers but handlers can
ask for a higher privilege by setting position to ’before’.

Example usage:

def on_before_metadata_assembled(metadata):
metadata.append('<!-- IM IN UR METADATA -->')

And in your setup() method do this:
connect_event('before-metadata-assembled',

on_before_metadata_assembled)

flask_plugins.iter_listeners(event)
Return an iterator for all the listeners for the event provided.

12 Chapter 3. API Documentation

Index

Symbols
__init__() (flask_plugins.PluginManager method), 10

A
all_plugins (flask_plugins.PluginManager attribute), 11
author (flask_plugins.Plugin attribute), 9

C
connect() (flask_plugins.EventManager method), 11
connect_event() (in module flask_plugins), 12

D
description (flask_plugins.Plugin attribute), 9
description_lc (flask_plugins.Plugin attribute), 9
disable() (flask_plugins.Plugin method), 10
disable_plugins() (flask_plugins.PluginManager

method), 11

E
emit_event() (in module flask_plugins), 12
enable() (flask_plugins.Plugin method), 10
enable_plugins() (flask_plugins.PluginManager method),

11
enabled (flask_plugins.Plugin attribute), 9
EventManager (class in flask_plugins), 11

F
find_plugins() (flask_plugins.PluginManager method), 11

G
get_all_plugins() (in module flask_plugins), 9
get_enabled_plugins() (in module flask_plugins), 9
get_plugin() (in module flask_plugins), 9
get_plugin_from_all() (in module flask_plugins), 9

I
identifier (flask_plugins.Plugin attribute), 9
install() (flask_plugins.Plugin method), 10
install_plugins() (flask_plugins.PluginManager method),

11

iter() (flask_plugins.EventManager method), 12
iter_listeners() (in module flask_plugins), 12

L
license (flask_plugins.Plugin attribute), 10
license_text (flask_plugins.Plugin attribute), 10
license_url (flask_plugins.Plugin attribute), 10
load_plugins() (flask_plugins.PluginManager method),

11

N
name (flask_plugins.Plugin attribute), 9

O
options (flask_plugins.Plugin attribute), 10

P
path (flask_plugins.Plugin attribute), 9
Plugin (class in flask_plugins), 9
PluginManager (class in flask_plugins), 10
plugins (flask_plugins.PluginManager attribute), 11

R
remove() (flask_plugins.EventManager method), 12

S
setup() (flask_plugins.Plugin method), 10
setup_plugins() (flask_plugins.PluginManager method),

11

T
template_emit() (flask_plugins.EventManager method),

12

U
uninstall() (flask_plugins.Plugin method), 10
uninstall_plugins() (flask_plugins.PluginManager

method), 11

13

Flask-Plugins Documentation, Release 0.1-dev

V
version (flask_plugins.Plugin attribute), 10

W
website (flask_plugins.Plugin attribute), 10

14 Index

	Quickstart
	Plugin Structure
	Hello World!
	Enabling and Disabling Plugins
	Events

	The info.json File
	API Documentation
	The Plugin Class
	Plugin System
	Event System

